69 research outputs found

    New concepts of inertial measurements with multi-species atom interferometry

    Full text link
    In the field of cold atom inertial sensors, we present and analyze innovative configurations for improving their measurement range and sensitivity, especially attracting for onboard applications. These configurations rely on multi-species atom interferometry, involving the simultaneous manipulation of different atomic species in a unique instrument to deduce inertial measurements. Using a dual-species atom accelerometer manipulating simultaneously both isotopes of rubidium, we report a preliminary experimental realization of original concepts involving the implementation of two atom interferometers first with different interrogation times and secondly in phase quadrature. These results open the door to a new generation of atomic sensors relying on high performance multi-species atom interferometric measurements

    Interférométrie Simultanée avec Deux EspÚces Atomiques ⁞⁷Rb/⁞⁔Rb et Applications aux Mesures Inertielles

    Get PDF
    In the emerging issue of testing the Equivalence Principle with cold atom inertial sensors, this thesis focuses on the realization and the characterization of a simultaneous dual-species atom interferometer (⁞⁷Rb & ⁞⁔Rb) which allows to measure the differential acceleration in an extremely sensitive way. The Mach-Zehnder type atom interferometer relies on the simultaneous handling of atomic wave-packets with stimulated Raman transitions. The laser system is based on the frequency doubling of a single laser source at 1560 nm. All the required laser frequencies for handling both isotopes (trapping, cooling, selection, interferometry and detection) are generated by phase modulating this source. A detailed modeling of the interferometer's inertial responses and an analysis of a method to extract the differential phase were carried out. The differential acceleration measurement led to an atom based test of the Weak Equivalence Principle of η(⁞⁷Rb,85Rb) = (1.3 ± 3.2)×10⁻⁷, at the state-of-the-art. The simultaneous aspect of the experiment allowed to highlight for the first time common mode vibration noise rejection with two different atomic species, a rejection factor of 50 000 being currently achieved. The current performance of the instrument exhibits a sensitivity on the differential acceleration of 1.23 × 10⁻⁷g/√Hz and a resolution of 2 × 10⁻âčg for integration times lower than few hours. Finally, innovative operating modes of dual-species atom interferometers for on-board acceleration measurements are explored.Dans la problĂ©matique Ă©mergente des expĂ©riences visant Ă  tester le Principe d'Équivalence Ă  l'aide de capteurs inertiels Ă  atomes froids, cette thĂšse porte sur la rĂ©alisation et la caractĂ©risation d'un interfĂ©romĂštre atomique double espĂšce simultanĂ© (⁞⁷Rb et ⁞⁔Rb) qui permet l'obtention d'une mesure extrĂȘmement sensible de l'accĂ©lĂ©ration diffĂ©rentielle. L'interfĂ©romĂštre, de type Mach-Zehnder, repose sur la manipulation simultanĂ©e des ondes de matiĂšre atomiques Ă  l'aide de transitions Raman stimulĂ©es. Le systĂšme laser est basĂ© sur le doublage en frĂ©quence d'une unique source laser Ă  1560 nm. L'ensemble des frĂ©quences lasers requises pour la manipulation des deux isotopes (piĂ©geage, refroidissement, sĂ©lection, interfĂ©romĂ©trie et dĂ©tection) sont gĂ©nĂ©rĂ©es par modulation en phase de cette source. Une modĂ©lisation dĂ©taillĂ©e des rĂ©ponses inertielles de l'interfĂ©romĂštre ainsi que l'analyse d'une mĂ©thode d'extraction de la phase diffĂ©rentielle Ă  partir du signal elliptique ont Ă©tĂ© menĂ©es. La mesure de l'accĂ©lĂ©ration diffĂ©rentielle a conduit Ă  un test atomique du Principe d'Équivalence Faible de η(⁞⁷Rb,85Rb) = (1.3 ± 3.2) × 10⁻⁷, Ă  l'Ă©tat de l'art. L'aspect simultanĂ© de la mesure a permis de mettre en Ă©vidence la rĂ©jection du bruit de vibration par effet de mode commun pour la premiĂšre fois avec deux espĂšces diffĂ©rentes, le facteur de rĂ©jection Ă©tant aujourd'hui de 50 000. Les performances actuelles de l'instrument sur la mesure d'accĂ©lĂ©ration diffĂ©rentielle montrent une sensibilitĂ© de 1.23×10⁻⁷g/√Hz et une rĂ©solution de 2×10⁻âčg pour des temps d'intĂ©gration infĂ©rieurs Ă  quelques heures. Pour finir, des modes de fonctionnement innovants d'interfĂ©romĂštres atomiques double espĂšce pour la mesure d'accĂ©lĂ©ration embarquĂ©e sont explorĂ©s

    Competition between Spin Echo and Spin Self-Rephasing in a Trapped Atom Interferometer

    Full text link
    We perform Ramsey interferometry on an ultracold 87Rb ensemble confined in an optical dipoletrap. We use a \pi-pulse set at the middle of the interferometer to restore the coherence of the spinensemble by canceling out phase inhomogeneities and creating a spin echo in the contrast. However,for high atomic densities, we observe the opposite behavior: the \pi-pulse accelerates the dephasingof the spin ensemble leading to a faster contrast decay of the interferometer. We understand thisphenomenon as a competition between the spin-echo technique and an exchange-interaction drivenspin self-rephasing mechanism based on the identical spin rotation effect. Our experimental data iswell reproduced by a numerical model

    Technology roadmap for cold-atoms based quantum inertial sensor in space

    Get PDF
    Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose-Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide "off the shelf"payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components

    Technology roadmap for cold-atoms based quantum inertial sensor in space

    Get PDF
    Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall interrogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose–Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide “off the shelf” payload for future generations of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic technology components

    Interférométrie Simultanée avec Deux EspÚces Atomiques ⁞⁷Rb/⁞⁔Rb et Applications aux Mesures Inertielles

    No full text
    In the emerging issue of testing the Equivalence Principle with cold atom inertial sensors, this thesis focuses on the realization and the characterization of a simultaneous dual-species atom interferometer (⁞⁷Rb & ⁞⁔Rb) which allows to measure the differential acceleration in an extremely sensitive way. The Mach-Zehnder type atom interferometer relies on the simultaneous handling of atomic wave-packets with stimulated Raman transitions. The laser system is based on the frequency doubling of a single laser source at 1560 nm. All the required laser frequencies for handling both isotopes (trapping, cooling, selection, interferometry and detection) are generated by phase modulating this source. A detailed modeling of the interferometer's inertial responses and an analysis of a method to extract the differential phase were carried out. The differential acceleration measurement led to an atom based test of the Weak Equivalence Principle of η(⁞⁷Rb,85Rb) = (1.3 ± 3.2)×10⁻⁷, at the state-of-the-art. The simultaneous aspect of the experiment allowed to highlight for the first time common mode vibration noise rejection with two different atomic species, a rejection factor of 50 000 being currently achieved. The current performance of the instrument exhibits a sensitivity on the differential acceleration of 1.23 × 10⁻⁷g/√Hz and a resolution of 2 × 10⁻âčg for integration times lower than few hours. Finally, innovative operating modes of dual-species atom interferometers for on-board acceleration measurements are explored.Dans la problĂ©matique Ă©mergente des expĂ©riences visant Ă  tester le Principe d'Équivalence Ă  l'aide de capteurs inertiels Ă  atomes froids, cette thĂšse porte sur la rĂ©alisation et la caractĂ©risation d'un interfĂ©romĂštre atomique double espĂšce simultanĂ© (⁞⁷Rb et ⁞⁔Rb) qui permet l'obtention d'une mesure extrĂȘmement sensible de l'accĂ©lĂ©ration diffĂ©rentielle. L'interfĂ©romĂštre, de type Mach-Zehnder, repose sur la manipulation simultanĂ©e des ondes de matiĂšre atomiques Ă  l'aide de transitions Raman stimulĂ©es. Le systĂšme laser est basĂ© sur le doublage en frĂ©quence d'une unique source laser Ă  1560 nm. L'ensemble des frĂ©quences lasers requises pour la manipulation des deux isotopes (piĂ©geage, refroidissement, sĂ©lection, interfĂ©romĂ©trie et dĂ©tection) sont gĂ©nĂ©rĂ©es par modulation en phase de cette source. Une modĂ©lisation dĂ©taillĂ©e des rĂ©ponses inertielles de l'interfĂ©romĂštre ainsi que l'analyse d'une mĂ©thode d'extraction de la phase diffĂ©rentielle Ă  partir du signal elliptique ont Ă©tĂ© menĂ©es. La mesure de l'accĂ©lĂ©ration diffĂ©rentielle a conduit Ă  un test atomique du Principe d'Équivalence Faible de η(⁞⁷Rb,85Rb) = (1.3 ± 3.2) × 10⁻⁷, Ă  l'Ă©tat de l'art. L'aspect simultanĂ© de la mesure a permis de mettre en Ă©vidence la rĂ©jection du bruit de vibration par effet de mode commun pour la premiĂšre fois avec deux espĂšces diffĂ©rentes, le facteur de rĂ©jection Ă©tant aujourd'hui de 50 000. Les performances actuelles de l'instrument sur la mesure d'accĂ©lĂ©ration diffĂ©rentielle montrent une sensibilitĂ© de 1.23×10⁻⁷g/√Hz et une rĂ©solution de 2×10⁻âčg pour des temps d'intĂ©gration infĂ©rieurs Ă  quelques heures. Pour finir, des modes de fonctionnement innovants d'interfĂ©romĂštres atomiques double espĂšce pour la mesure d'accĂ©lĂ©ration embarquĂ©e sont explorĂ©s

    Simultaneous Interferometry with Two Atomic Species ⁞⁷Rb/⁞⁔Rb and Applications to Inertial Measurements

    No full text
    Dans la problĂ©matique Ă©mergente des expĂ©riences visant Ă  tester le Principe d'Équivalence Ă  l'aide de capteurs inertiels Ă  atomes froids, cette thĂšse porte sur la rĂ©alisation et la caractĂ©risation d'un interfĂ©romĂštre atomique double espĂšce simultanĂ© (⁞⁷Rb et ⁞⁔Rb) qui permet l'obtention d'une mesure extrĂȘmement sensible de l'accĂ©lĂ©ration diffĂ©rentielle. L'interfĂ©romĂštre, de type Mach-Zehnder, repose sur la manipulation simultanĂ©e des ondes de matiĂšre atomiques Ă  l'aide de transitions Raman stimulĂ©es. Le systĂšme laser est basĂ© sur le doublage en frĂ©quence d'une unique source laser Ă  1560 nm. L'ensemble des frĂ©quences lasers requises pour la manipulation des deux isotopes (piĂ©geage, refroidissement, sĂ©lection, interfĂ©romĂ©trie et dĂ©tection) sont gĂ©nĂ©rĂ©es par modulation en phase de cette source. Une modĂ©lisation dĂ©taillĂ©e des rĂ©ponses inertielles de l'interfĂ©romĂštre ainsi que l'analyse d'une mĂ©thode d'extraction de la phase diffĂ©rentielle Ă  partir du signal elliptique ont Ă©tĂ© menĂ©es. La mesure de l'accĂ©lĂ©ration diffĂ©rentielle a conduit Ă  un test atomique du Principe d'Équivalence Faible de η(⁞⁷Rb,85Rb) = (1.3 ± 3.2) × 10⁻⁷, Ă  l'Ă©tat de l'art. L'aspect simultanĂ© de la mesure a permis de mettre en Ă©vidence la rĂ©jection du bruit de vibration par effet de mode commun pour la premiĂšre fois avec deux espĂšces diffĂ©rentes, le facteur de rĂ©jection Ă©tant aujourd'hui de 50 000. Les performances actuelles de l'instrument sur la mesure d'accĂ©lĂ©ration diffĂ©rentielle montrent une sensibilitĂ© de 1.23×10⁻⁷g/√Hz et une rĂ©solution de 2×10⁻âčg pour des temps d'intĂ©gration infĂ©rieurs Ă  quelques heures. Pour finir, des modes de fonctionnement innovants d'interfĂ©romĂštres atomiques double espĂšce pour la mesure d'accĂ©lĂ©ration embarquĂ©e sont explorĂ©s.In the emerging issue of testing the Equivalence Principle with cold atom inertial sensors, this thesis focuses on the realization and the characterization of a simultaneous dual-species atom interferometer (⁞⁷Rb & ⁞⁔Rb) which allows to measure the differential acceleration in an extremely sensitive way. The Mach-Zehnder type atom interferometer relies on the simultaneous handling of atomic wave-packets with stimulated Raman transitions. The laser system is based on the frequency doubling of a single laser source at 1560 nm. All the required laser frequencies for handling both isotopes (trapping, cooling, selection, interferometry and detection) are generated by phase modulating this source. A detailed modeling of the interferometer's inertial responses and an analysis of a method to extract the differential phase were carried out. The differential acceleration measurement led to an atom based test of the Weak Equivalence Principle of η(⁞⁷Rb,85Rb) = (1.3 ± 3.2)×10⁻⁷, at the state-of-the-art. The simultaneous aspect of the experiment allowed to highlight for the first time common mode vibration noise rejection with two different atomic species, a rejection factor of 50 000 being currently achieved. The current performance of the instrument exhibits a sensitivity on the differential acceleration of 1.23 × 10⁻⁷g/√Hz and a resolution of 2 × 10⁻âčg for integration times lower than few hours. Finally, innovative operating modes of dual-species atom interferometers for on-board acceleration measurements are explored
    • 

    corecore